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Optimal lower bounds on the electric-field concentration
in composite media
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Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 16 January 2004; accepted 6 June 2004)

Composites made from two linear-isotropic-dielectric materials are considered. It is assumed that
only the volume fraction and the two-point correlation function of each dielectric material are
known. Lower bounds on allrth moments of the electric-field intensity inside each phase are
obtained forr ù2. A lower bound on the maximum field intensity inside the composite is also
obtained. The bounds are given in terms of the one- and two-point statistics of the microgeometry.
All of these bounds are shown to be the best possible as they are attained by the electric-field
associated with a suitably constructed space-filling confocal-ellipsoid assemblage. The bounds
provide a new opportunity for the assessment of local field behavior in terms of a statistical
description of the microstructure. ©2004 American Institute of Physics. [DOI: 10.1063/1.1777808]

I. INTRODUCTION

The study of failure initiation in dielectric composites
requires one to assess the magnitude of the local electric-
field arising from macroscopic potential gradients. Macro-
scopic quantities sensitive to the local field behavior include
higher-order moments of the electric-field inside the compos-
ite. In this work, we focus on two–phase dielectric compos-
ites and develop optimal lower bounds on the higher mo-
ments of the electric-field that depend on statistics of the
microgeometry gathered from image analysis.1

The composite is contained inside a cubeQ, and no con-
straints are placed upon the arrangement of the two materials
inside Q. The subsets ofQ, occupied by materials one and
two, are denoted byQ1 and Q2, respectively. The indicator
function of material one is denoted byx1 and takes the value
one insideQ1 and zero outside. The indicator function of
material two is given byx2 andx2=1−x1. It is supposed that
Q is the period cell for an infinite periodic medium. The
one-point and two-point correlation functions are given by

S1
1 =

1

uQuEQ

x1sxddx

and

S1
2std =

1

uQuEQ

x1sxdx1sx + tddx, s1.1d

wheret is any vector anduQu is the volume ofQ. The one-
point correlationS1

1 gives the volume fraction of material
one. The two-point correlationS1

2std gives the probability
that a rod of length and orientation specified byt has both
ends in material one when it is translated and dropped inside
the periodic medium. Image-processing techniques have re-
cently been developed in Ref. 1 to determine the one-point,
two-point, and three-point correlation functions from images
of composite microstructure.

The electric and displacement fieldsEsxd and Dsxd in-
side the two-phase dielectric satisfyEsxd= ¹fsxd andDsxd
=esxdEsxd. Here, −f is the electric potential and the dielec-
tric constantesxd takes the two valuese1 ande2, with e1.e2,
and

Df = 0, in phase 1,

s1.2d
Df = 0, in phase 2.

It is assumed that there is perfect contact between the dielec-
trics so the electric potential and normal component of the
displacement are continuous across the two-phase interface,
i.e.,

f1 = f2,

s1.3d
D1 ·n = D2 ·n.

Here,n is the unit normal to the interface pointing into ma-
terial two, and the subscripts indicate the side of the interface
that the fields are evaluated on. For a prescribed constant

electric-field Ē, the average electric-fieldkEl satisfieskEl
=Ē andfsxd−Ē ·x is periodic onQ. The effective dielectric
tensor is defined by

kDl = EeĒ. s1.4d

In this work, we consider the moments of the electric-
field intensity inside each phase given by

kx1uEsxdurl1/r

and

kx2uEsxdurl1/r s1.5d

for 2ø r ,`. Here, k·l indicates the volume average of a
quantity over the cubeQ. We also consider theL` norms
given by

iEsxdiL`sQ1d = lim
r→`

kx1uEsxdurl1/r ,
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iEsxdiL`sQ2d = lim
r→`

kx2uEsxdurl1/r ,

iEsxdiL`sQd = lim
r→`

kuEsxdurl1/r . s1.6d

In Sec. III, we present explicit optimal lower bounds on the
moments in Eq.(1.5) and L` norms in Eq.(1.6) that are
given in terms ofS1

1 and S1
2. In this, work the minimizing

configurations are shown to be given by suitably constructed
confocal-ellipsoid assemblages.2,3 These configurations in-
clude the Hashin–Shtrikman4 coated sphere assemblage as a
special case. The bounding technique presented in Secs. II
and III also applies when loss becomes significant in the
dielectrics, i.e., for complex values ofe1 ande2. This issue is
taken up in Sec. VII where explicit bounds are given for
statistically isotropic composites.

The optimal lower bounds for the higher moments of the
electric-fields can be used to assess the effective higher-order
response of weakly nonlinear composite media. This is due
to the fact that the effective higher-order nonlinear response
for weakly nonlinear dielectric media can be approximated
by suitable higher moments of the linear electric-field.5–8

Previous investigations have provided upper and lower
bounds on the second moments of the electric-field in com-
posite media.9–14 Higher-order moments of the electric-field
have been calculated numerically for the two-dimensional
dispersions of disk, needle, and square-shaped inclusions15

as well as the density of states for the Hashin coated cylinder
assemblage.16 For the multiphase nonlinear power law di-
electric composites, optimal lower bounds on the moments
of the electric-field are found when the degree of the moment
matches the power of the nonlinearity.17 For completeness,
we list recent work done in the context of two-phase linear
elasticity. Here, optimal inclusion shapes are sought that
minimize the maximum eigenvalue of the local stress for a
given applied stress. The work presented in Ref. 18 provides
an optimal lower bound on the supremum of the maximum
principle stress for a single, simply connected stiff inclusion
in an infinite matrix subject to a remote stress at infinity. The
optimal shapes are given by ellipsoids. The work presented
in Ref. 19 provides an optimal lower bound on the supre-
mum of the maximum principle stress for two-dimensional
periodic composites consisting of a single, simply connected
stiff inclusion in the period cell. The bound is given in terms
of the area fraction of the included phase, and for an explicit
range of prescribed average stress, the optimal inclusions are
given by the Vigdergauz shapes.20

II. LOWER BOUNDS ON THE ELECTRIC-FIELD
INTENSITY IN ANISOTROPIC COMPOSITES
AND SUFFICIENT CONDITIONS
FOR OPTIMALITY

In this section, we establish lower bounds on theL`

norm of the electric-field inside each material. Sufficient
conditions on the electric-field are identified, which guaran-
tee that lower bound is attained. These conditions are used to
establish the optimality of the bounds presented in Sec. III.

For 0,u1,1, we suppose that the volume fraction of
material oneS1

1 is fixed and given byu1. The volume fraction
of material two is given byu2=1−u1. For any vector field
Fsxd defined onQ, one has

kx2sxduEsxd − Fsxdu2l ù 0. s2.1d

SettingF equal to a constant vectorF̄, one obtains

kx2sxduEsxdu2l ù 2F̄ · kx2sxdEsxdl − u2uF̄u2. s2.2d

Optimizing overF̄ gives

kx2sxduEsxdu2l ù
1

u2
ukx2sxdEsxdlu2. s2.3d

Expanding Eq.(1.4), one obtains

EeĒ = kfse1 + x2se2 − e1dgEsxdl. s2.4d

Recalling thatkEsxdl=Ē, one easily deduces the identity
given by

se2 − e1d−1sEe − e1IdĒ = kx2sxdEsxdl. s2.5d

From Eq.(2.3), one obtains

kx2sxduEsxdu2l ù
1

u2se2 − e1d2usEe − e1IdĒu2. s2.6d

For p andq such thatpù1 and 1/p+1/q=1, an elementary
estimate gives

uQu1/qu2
1/qSE

Q

x2sxduEsxdu2pdxD1/p

ù uQukx2sxduEsxdu2l, s2.7d

and it follows that

kx2sxduEsxdurl1/r ù
u2

1/r

u2ue2 − e1u
usEe − e1IdĒu, s2.8d

for 2ø r ø`. From Eq.(2.5), one easily sees that the lower
bound given by Eq.(2.8) is optimal when the electric field is
constant inside material two.

Similar arguments give the lower bound

kx1sxduEsxdu2l ù
1

u1se1 − e2d2usEe − e2IdĒu2, s2.9d

and it follows that

kx1sxduEsxdurl1/r ù
u1

1/r

u1ue1 − e2u
usEe − e2IdĒu s2.10d

for 2ø r ø`. Here, equality holds in Eq.(2.10) when the
electric-field is constant inside phase one.

III. OPTIMAL LOWER BOUNDS ON THE MOMENTS
OF THE ELECTRIC-FIELD

Optimal lower bounds on the moments andL` norms of
the electric-field are presented. The bounds are given in
terms of the volume fraction of material one and the eigen-
values of a tensor of geometric parameters that depend ex-
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plicitly on the two-point correlation function. The tensor of
geometric parametersMsS1

1,S1
2d is now well known and is

given by2,21

MsS1
1,S1

2d =
1

S1
1s1 − S1

1dokÞ0
S1

2skd
k ^ k

uk u2
, s3.1d

wherek is a vector on the integer lattice,k ^ k is the rank-1
matrix with entriesk ik j andS1

2skd are the Fourier coefficients
of S1

2std computed over the cubeQ. Here,tracehMsS1
1,S1

2dj
=1 andMsS1

1,S1
2d is positive semidefinite. The eigenvalues

of MsS1
1,S1

2d are written in an ascending order and are de-
noted byl1sS1

1,S1
2d, l2sS1

1,S1
2d, and l3sS1

1,S1
2d. It is evident

that one can introduce the one- and two-point correlation
functions for material two denoted byS2

1 and S2
2std. For fu-

ture reference, we point out that it is well known and easy to
see that the associated tensor of geometric parameters
MsS2

1,S2
2d is identical toMsS1

1,S1
2d.

We introduce the setK+ of all vectors d=sd1,d2,d3d
such that 0ød1ød2ød3 and oi di =1. The class of micro-
geometries(configurations of the two materials) for which
S1

1=u1 andlisS1
1,S1

2d=di, i =1,2,3 isdenoted byRsu1,dd. In
what follows, we provide optimal lower bounds on the mo-
ments andL` norms of the electric-field for microstructures
in the classRsu1,dd. From a mathematical perspective, this
problem is an optimization problem, i.e., among all configu-
rations inRsu1,dd, we seek a configuration of the two di-
electrics that minimize the moments and theL` norms. It is
shown here that the extremal microgeometries that attain the
bounds are given by the confocal-ellipsoid assemblages.

The construction of a confocal-ellipsoid assemblage with
a core of material two and a coating of material one is de-
scribed as follows. One considers the cube containing a
space-filling assemblage of ellipsoids. Here, all ellipsoids are
contained insideQ and have the same shape and orientation
of axes and differ only in their size. Inside each ellipsoid,
one places a smaller confocal-ellipsoid filled with material
two and the surrounding shell is filled with material one. We
call these coated ellipsoids. The part ofQ not covered by the
coated ellipsoids has zero volume(measure). The volume
fractions of materials one and two are the same for each
coated ellipsoid and are given by the proportionsu1 andu2,
respectively(see Fig. 1.) A confocal-ellipsoid assemblage
with a core of material one and a coating of material two is
constructed in an identical way.

For future reference, we list the well-known properties2,3

of the local electric-field inside the confocal-ellipsoid assem-
blage that are useful for the subsequent analysis. To fix ideas,
we consider an assemblage with a core of material two and a
coating of material one. We select a prototypical coated el-
lipsoid from the assemblage. One recalls that the electric
field in the composite is given byEsxd= ¹f. Here, f is
continuous inside the coated ellipsoid, harmonic in the core
phase and coating phase, and satisfies the transmission con-
ditions [Eq. (1.3)] on the core-coating interface. The fields
inside the coated ellipsoid exhibit several distinguishing fea-

tures. The first and foremost is thatf=Ē ·x on the external
boundary of the coated ellipsoid. This implies that on the
external boundary

t ·Esxd = t · Ē s3.2d

for every vectort tangent to the external boundary atx.
Secondly, on the external boundary, one has the following
flux condition given by

n · e1Esxd = n · ĒeĒ, s3.3d

wheren is the exterior unit normal andĒe is the effective
dielectric constant of the confocal-ellipsoid assemblage.
Lastly, the electric-field inside the core material two is con-
stant and given by

Esxd =
1

u2se2 − e1d
sĒe − e1IdĒ. s3.4d

The confocal-ellipsoid assemblage consists of translated and
rescaled versions of the prototypical coated ellipsoid. The

electric-field Ẽsxd in a rescaled and translated coated ellip-
soid with scale factort.0 is related to the electric-fieldEsxd
in the prototype byẼsxd=Est−1xd and Eqs.(3.2)–(3.4) are
satisfied for every rescaled and translated confocal-ellipsoid.
Thus, the electric-field in material two is given by Eq.(3.4)
and the lower bound in Eq.(2.8) is attained. Interchanging
core and coating materials, one sees that the field inside
phase one is constant for a confocal-ellipsoid assemblage
with a core of material one and a coating of material two and
is given by

Esxd =
1

u1se1 − e2d
sEIe − e2IdĒ. s3.5d

and the lower bound in Eq.(2.10) is attained.
For d andu1 fixed, we define

L1 =
e2

e2 + se1 − e2ds1 − u1dd3
s3.6d

and

L2 =
e1

e1 − se1 − e2du1d1
, s3.7d

whereL1ø1øL2.

FIG. 1. Confocal-ellipsoid assemblage.
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The optimal lower bounds on the moments of the
electric-field are given in the following:

A. Optimal lower bound on the moments of the
electric-field intensity in material one

For everyu1 andd in K+, the electric-fieldEsxd associ-
ated with any microgeometry inRsu1,dd satisfies

u1
1/rL1uĒu ø kx1uEsxdurl1/r, for 2 ø r , `. s3.8d

Moreover, for everyu1 andd in K+, there exists a confocal-
ellipsoid assemblage with a core of material one inRsu1,dd,
for which the minor axis of the ellipsoids are aligned withĒ,
and Eq.(3.8) holds with equality for everyr in 2ø r ,`.

B. Optimal lower bound on the L` norms of the
electric-field intensity in material one

For everyu1 andd in K+, the electric-fieldEsxd associ-
ated with any microgeometry inRsu1,dd satisfies

L1uĒu ø iEsxdiL`sQ1d. s3.9d

Moreover, for everyu1 andd in K+, there exists a confocal-
ellipsoid assemblage with a core of material one inRsu1,dd,
for which the minor axis of the ellipsoids are aligned withĒ,
and Eq.(3.9) holds with equality.

C. Optimal lower bound on the moments of the
electric-field intensity in material two

For everyu1 andd in K+, the electric-fieldEsxd associ-
ated with any microgeometry inRsu1,dd satisfies

s1 − u1d1/rL2uĒu ø kx2uEsxdurl1/r, for 2 ø r , `.

s3.10d

Moreover, for everyu1 andd in K+, there exists a confocal-
ellipsoid assemblage with a core of material two inRsu1,dd,
for which the major axis of the ellipsoids are aligned withĒ,
and Eq.(3.10) holds with equality for everyr in 2ø r ,`.

D. Optimal lower bound on the L` norm of the
electric-field intensity in material two

For everyu1 andd in K+, the electric-fieldEsxd associ-
ated with any microgeometry inRsu1,dd satisfies

L2uĒu ø iEsxdiL`sQ2d. s3.11d

Moreover, for everyu1 andd in K+, there exists a confocal-
ellipsoid assemblage with a core of material two inRsu1,dd,
for which the major axis of the ellipsoids are aligned withĒ,
and Eq.(3.11) holds with equality.

E. Optimal lower bound on the L` norm of the
electric-field intensity

For everyu1 andd in K+, the electric-fieldEsxd associ-
ated with any microgeometry inRsu1,dd satisfies

L2uĒu ø iEsxdiL`sQd. s3.12d

Moreover, for everyu1 andd in K+, there exists a confocal-
ellipsoid assemblage with a core of material two inRsu1,dd,
for which the major axis of the ellipsoids are aligned withĒ,
and Eq.(3.12) holds with equality.

When the composite is statistically isotropic,d
=s1/3,1/3,1/3d and

L2 = 3e1/f3e1 − se1 − e2du1g. s3.13d

For this case, one has the following optimal lower bound on
theL` norm of the electric-field intensity inside the compos-
ite given by the following:

F. Optimal lower bound on the L` norm of the
electric-field intensity for statistically
isotropic composites

Consider all microgeometries inRsu1,dd for the case

d=s1/3,1/3,1/3d. For a prescribed average electric-fieldĒ,
the lower bound on theL` norm of the electric-field concen-
tration is given by

h3e1/f3e1 − se1 − e2du1gjuĒu ø iEsxdiL`sQd. s3.14d

The lower bound is attained by the electric-field inside the
Hashin-Shtrikman concentric-coated sphere assemblage with

a core of material two for every choice of applied fieldĒ.

IV. DERIVATION OF THE LOWER BOUNDS

We recall the energy bounds21 given by

U−h · h ø Eeh · h ø U+h · h s4.1d

for every constant vectorh, Where

U+ = e1I − s1 − S1
1de1fe1se1 − e2d−1I − S1

1MsS1
1,S1

2dg−1,

s4.2d

U− = e2I + S1
1e2fe2se1 − e2d−1I + s1 − S1

1dMsS1
1,S1

2dg−1.

s4.3d

We write the eigenvalues ofEe in an ascending ordere1
e, e2

e,
ande3

e. For any microgeometry inRsu1,dd, it follows easily
from Eq. (4.1) that

lIi ø ei
e ø l̄i, for i = 1,2,3, s4.4d

where

lI1 = e2 + u1e2fe2se1 − e2d−1 + u2d3g−1,

l̄1 = e1 − u2e1fe1se1 − e2d−1 − u1d3g−1;

lI2 = e2 + u1e2fe2se1 − e2d−1 + u2d2g−1;

s4.5d
l̄2 = e1 − u2e1fe1se1 − e2d−1 − u1d2g−1;

lI3 = e2 + u1e2fe2se1 − e2d−1 + u2d1g−1,

l̄3 = e1 − u2e1fe1se1 − e2d−1 − u1d1g−1.
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It follows immediately from Eqs.(4.4) and (4.5) that

L1uĒu ø
1

u1ue1 − e2u
usEe − e2IdĒu,

s4.6d

L2uĒu ø
1

u2ue1 − e2u
usEe − e1IdĒu,

and the lower bounds in Eqs.(3.9) and (3.11) now follow
immediately from Eqs.(2.8), (2.10), and(4.6).

To obtain bounds on the moments, note that Eqs.(2.6),
(2.9), and(4.6) together with Hölders’ inequality imply that

uQuu1sL1d2uĒu2 ø E
Q

x1uEsxdu2 dx

ø suQuu1d1/qSE
Q

x1uEsxdu2p dxD1/p

,

uQuu2sL2d2uĒu2 ø E
Q

x2uEsxdu2 dx

ø suQuu2d1/qSE
Q

x2uEsxdu2p dxD1/p

, s4.7d

where pù1, 1/p+1/q=1, and the lower bounds in Eqs.
(3.8) and (3.10) follow immediately.

The lower bound given by Eq.(3.12) follows immedi-
ately from Eq.(3.11) and

L2uĒu ø iEsxdiL`sQ2d ø iEsxdiL`sQd. s4.8d

V. OPTIMALITY

In this section, the lower bounds are shown to be at-
tained within the class of microstructures given by the
confocal-ellipsoid assemblages. We write the formulas for
the effective dielectric tensors for the confocal-ellipsoid as-
semblage in a form that is suitable for our purposes. The
formulas differ from the original formulas given in Refs. 2
and 3 and are derived in the following sections. The effective
dielectric tensor for the confocal-ellipsoid assemblage with a
core of material two and a coating of material one is given
by

e1I − Ēe = u2e1fe1se1 − e2d−1I − u1MsS1
1,S1

2dg−1, s5.1d

and the eigenvalues are given byl̄i, for i =1, 2, and 3 de-

fined in Eq.(4.5). Eigenvectors corresponding tol̄3 include
vectors parallel to the major axis of the coated ellipsoids.

Eigenvectors corresponding tol̄1 include vectors parallel to
the minor axis of the coated ellipsoids.

The effective dielectric tensor with a core of material
one and a coating of material two is given by

EIe − e2I = u1e2fe2se1 − e2d−1I + u2MsS1
1,S1

2dg−1, s5.2d

and the eigenvalues are given bylIi, for i =1, 2, and 3 de-
fined in Eq. (4.5). Here, eigenvectors corresponding tolI3

include vectors parallel to the major axis of the coated ellip-
soids. Eigenvectors corresponding tolI1 include vectors par-
allel to the minor axis of the coated ellipsoids.

We now state the following:

A. Attainability property

For any choice ofu1 and any symmetric tensorH with
eigenvalues inK+, there exists a confocal-ellipsoid assem-
blage with a core of material one and a coating of material
two, such thatS1

1=u1,

MsS1
1,S1

2d = H, s5.3d

and there exists a confocal-ellipsoid assemblage with a core
of material two and a coating of material one, such thatS1

1

=u1 and

MsS2
1,S2

2d = H. s5.4d

The attainability property is established in the following sec-
tion.

We now establish the optimality of the lower bound in
Eq. (3.8). The characteristic function of material one in the
confocal-ellipsoid assemblage with a core of material one
and a coating of material two is denoted byx1

el. The volume
fraction of material one is prescribed to beu1, i.e., kx1

ell
=u1. The electric-field inside material one of the confocal-
ellipsoid assemblage is constant and from Eq.(3.5), one re-
calls that the electric-field in material one is given by

Esxd =
1

u1se1 − e2d
sEIe − e2IdĒ. s5.5d

For a prescribed vectord in K+, it follows from Eq.(5.3) that
we can choose the confocal-ellipsoid assemblage, such that
the eigenvalues ofMsS1

1,S1
2d correspond tod and

MsS1
1,S1

2dĒ = d3Ē. s5.6d

For this case, it follows from earlier remarks that the minor

axes of the ellipsoids are aligned with the applied fieldĒ and
from Eqs.(5.2), (5.5), and(5.6), it follows that the electric-
field in material one is given by

Esxd =
1

u1se1 − e2d
slI1 − e2IdĒ = L1Ē. s5.7d

Substitution gives

kx1
eluEsxdurl1/r = u1

1/rL1uĒu, s5.8d

and the optimality of Eq.(3.8) is established. The optimality
of Eq. (3.9) follows immediately from Eq.(5.7). The opti-
mality of the bounds in Eqs.(3.10) and (3.11) follow from
identical considerations using confocal-ellipsoid assem-
blages with a core of material two and a coating of material
one. For this case, the major axes of the ellipsoids are

aligned withĒ andEsxd=L2Ē in the core.
Last, we establish the optimality of Eq.(3.12). To do

this, we examine the electric-field inside the confocal-
ellipsoid assemblage with a core of material two for which
all ellipsoids have major axes aligned with the applied field

Ē. Consider any coated ellipsoid in the assemblage and note

that uEsxdu=L2uĒu in the core. In what follows, we will show
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that the electric-field intensity in the coating is bounded

above byL2uĒu. Because the coated ellipsoids coverQ (up to
a set of measure zero), it then follows that

L2uĒu = iEsxdiL`sQd s5.9d

for this confocal-ellipsoid assemblage.
Now we show that the electric-field intensity is bounded

above byL2uĒu in the coating. To do this, recall thatuEsxdu
= u¹fsxdu in the coating phase and thatf is harmonic there.
Thus, uEsxdu is subharmonic in the coating, and from the
maximum principle, it necessarily takes its maximum values
either on the interface between the core and the coating or on
the external boundary of the coated ellipsoid. We denote tan-
gent vectors to the core–coating interface byt, and the unit
normal to the interface is denoted byn. The trace of the
electric-field on the core side of the interface is denoted by
Eu2, and the trace of the electric-field on the coating side of
the interface is denoted byEu1. Continuity of f across the
interface gives

Eu1 · t = Eu2 · t, s5.10d

and continuity of the normal component of displacement
gives

e1Eu1 ·n = e2Eu2 ·n. s5.11d

For points on the interface whereEu1
·n=0, it is clear that

uEu1u= uEu2u. For all other points on the interface

uEu1 ·nu =
e2

e1
uEu2 ·nu ø uEu2 ·nu, s5.12d

sincee1.e2. It now follows from Eqs.(5.10) and(5.12) that

uEu1u ø uEu2u = L2uĒu s5.13d

on the core–coating interface. The trace of the electric-field
on the coating side of the external interface is denoted by
Euext. On the external boundary of the coated ellipsoid, one
recalls Eq.(3.2) and

Euext· t = Ē · t, s5.14d

wheret is any tangent vector to the external boundary. From
Eq. (3.3), we have

e1Euext·n = ĒeĒ ·n = l̄3Ē ·n. s5.15d

Here,n is the outer unit normal to the external boundary and
from Eq. (4.5)

l̄3 , e1. s5.16d

Using, Eq.(5.16), we argue as before to deduce that on the

outer boundaryuEuextuø uĒu. We apply the maximum principle

and note that 1øL2 to deduce thatuEsxduøL2uĒu in the coat-
ing and optimality follows.

Optimality of Eq. (3.14) follows immediately from the
same arguments used to establish the optimality of Eq.
(3.12). This can also be checked by directly calculating the
electric field inside the Hashin-Shtrikman coated sphere as-
semblage.

VI. FORMULAS FOR EFFECTIVE PROPERTIES

In this section, we establish the formulas in Eqs.(5.1)
and (5.2) for the effective properties of confocal-ellipsoid
assemblages. We equate these formulas with the better-
known formulas for the effective properties of confocal-
ellipsoid assemblages given in Refs. 2 and 3 to establish the
attainability property expressed in Eqs.(5.3) and (5.4).

We sketch the ideas behind the derivation of Eq.(5.2)
noting that Eq.(5.1) is established along similar lines. The
electric-field inside the concentric-ellipsoid assemblage with
a core of material one and a coating of material two admits

the decompositionEsxd= ¹u+Ē, whereu is Q periodic and
is the solution of

divhfe1x1 + e2s1 − x1dgs¹u + Ēdj = 0. s6.1d

This is equivalent to

e2Du = − divfse1 − e2dx1s¹u + Ēdg = 0. s6.2d

From Eq.(6.2), one easily obtains the identity

Esxd = −
se1 − e2d

e2
¹ D−1divsx1Esxdd + Ē, s6.3d

wherew=D−1f is theQ periodic solution ofDw= f. The con-

stant value thatEsxd takes in material one is denoted byẼ
and it is clear thatx1sxdEsxd=x1sxdẼ. Multiplying Eq. (6.3)
by x1 and taking averages gives

u1Ẽ = −
se1 − e2d

e2
kx1 ¹ D−1div x1Ẽl + u1Ē. s6.4d

It is well known2 that

kx1 ¹ D−1 div x1Ẽl = u1u2MsS1
1,S1

2dẼ, s6.5d

and it follows that

Ẽ = u1Su1I +
se1 − e2d

e2
u1u2MsS1

1,S1
2dD−1

Ē. s6.6d

We recall from Eq.(3.5) that

Ẽ =
1

u1se1 − e2d
sEIe − e2IdĒ. s6.7d

Equation(5.2) follows on elimination ofẼ from Eqs.(6.6)
and (6.7).

We establish the attainability result stated in Eq.(5.3).
From Refs. 2 and 3, the effective dielectric tensor with a core
of material one and a coating of material two is given by

EIe − e2I = u1e2fe2se1 − e2d−1I + u2Hg−1, s6.8d

whereH is a symmetric-positive-semidefinite matrix with a
unit trace. It is shown in Ref. 3 thatH ranges over all such
matrices as the shape of the ellipsoids are varied while keep-
ing the core volume fractionu1 fixed. The attainability prop-
erty in Eq. (5.3) follows immediately noting that Eqs.(5.2)
and (6.8) are equal and solving forMsS1

1,S1
2d. Identical ar-

guments are used to establish Eq.(5.4).
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VII. BOUNDS ON FIELD CONCENTRATIONS FOR
TWO-PHASE COMPOSITES WITH COMPLEX
DIELECTRIC PERMITTIVITY

The effects of loss become important when considering
optical properties of composite materials. For this case, the
dielectric constantse1 ande2 are complex. A straightforward
calculation easily shows that the lower bounds on the field
fluctuations given by Eqs.(2.8) and(2.10) also hold for this
case. Moreover, Eq.(2.8) is optimal when the electric-field is
constant in material two, and Eq.(2.10) is optimal when the
electric-field is constant in material one.

The methodology of Sec. III is applied to obtain lower
bounds on the field concentrations in statistically isotropic
two-phase dielectric composites when the dielectric con-
stants are complex. To illustrate the method, we show how to
obtain a lower bound on the field concentration inside mate-
rial two. For isotropic composites, the complex effective di-
electric tensor reduces toEe=eeI. Here, ee is the effective
complex permittivity. For this case, Eq.(2.8) becomes

kx2sxduEsxdurl1/r ù u2
1/rS 1

u2
U ee − e1

e2 − e1
UDuĒu s7.1d

for 2ø r ø`.
Bounds onee that are given in terms of the volume frac-

tions and dielectric constants of the component materials
were derived in Ref. 22. These reduce to the Hashin-
Shtrikman bounds when the component dielectrics are real
valued. In this context, the bounds are given by curves
bounding a regionVu2

of the complex plane inside, whichee

must lie. The explicit formulas for the boundary are given in
terms ofe1, e2, andu2 and can be found in Ref. 2. We set

L2 = minH 1

u2
U z− e1

e2 − e1
U ;z in Vu2J . s7.2d

The lower bound on the field concentrations for statistically
isotropic composites is given by

u2
1/rL2uĒu ø kx2sxduEsxdurl1/r s7.3d

for 2ø r ø`. Here, the constantL2 is computed numerically.
To fix ideas fore1=20+i, e2=−2+3i, and u2=0.4, calcula-
tion shows thatL2=1.06. Similar considerations give lower
bounds on the field fluctuations in material one. It is pointed
out that, for the case of complex dielectric constants, the
optimality of the bound in Eq.(7.3) remains an open ques-
tion and is the topic of future research.

If more information on the microstructure is available,
then one has tighter lower bounds on the higher moments of
the electric-field. This follows from the correspondingly
tighter bounds onee given in terms of higher-order statistical
information.2 The tighter bounds restrictee to a subsetA of
Vu2

. It is then clear from Eq.(7.1) that minimization of

1

u2
U z− e1

e2 − e1
U s7.4d

for z in A provides a lower bound onkx2sxduEsxdurl1/r that is

greater than or equal tou2
1/rL2uĒu.

VIII. DISCUSSION: EXTREME SUPPRESSION OF
FIELD CONCENTRATIONS

One recalls that theL` norms of the electric-field inten-
sity inside the confocal-ellipsoid assemblage with a core of

material two and a major axis aligned withĒ is given by

e1fe1−se1−e2du1d1g−1uĒu. In the limit when the ratio between
the major and minor axes of the ellipsoids tends to be infinite
the geometric parameterd1 tends to be zero and theL`

norms of the field intensity, is preciselyuĒu. This value
agrees with the electric-field intensity seen in a layered ma-

terial with layers parallel toĒ. The largest value of theL`

norm of the electric-field intensity for this class of assem-
blages with a core of material two and major axes aligned

with Ē is given by the Hashin-Shtrikman coated sphere as-
semblage when all axes of the ellipsoids are equal andd1

=1/3.
It is clear that theL` norm of the electric-field intensity

inside the confocal-ellipsoid assemblage with a core of ma-
terial two remains finite even ase2→0. In this limit, it is

given by 1/1−u1d1uĒu. At first sight, this appears counter-
intuitive as high-contrast inclusions can be arbitrarily close
together inside the confocal-ellipsoid assemblage. However,
since every coated ellipsoid “sees” the linear Dirichlet

boundary conditions given byf=Ē ·x, it is clear that the
fields inside each coated ellipsoid are not affected by the
surrounding inclusions, and field concentrations do not oc-
cur.
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