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Optimal lower bounds on the electric-field concentration
in composite media

Robert Lipton®
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 16 January 2004; accepted 6 June Y004

Composites made from two linear-isotropic-dielectric materials are considered. It is assumed that
only the volume fraction and the two-point correlation function of each dielectric material are
known. Lower bounds on alith moments of the electric-field intensity inside each phase are
obtained forr=2. A lower bound on the maximum field intensity inside the composite is also
obtained. The bounds are given in terms of the one- and two-point statistics of the microgeometry.
All of these bounds are shown to be the best possible as they are attained by the electric-field
associated with a suitably constructed space-filling confocal-ellipsoid assemblage. The bounds
provide a new opportunity for the assessment of local field behavior in terms of a statistical
description of the microstructure. 004 American Institute of Physid®Ol: 10.1063/1.1777808

I. INTRODUCTION The electric and displacement fiel&&§x) and D(x) in-
) S ) _ side the two-phase dielectric satid(x)=V ¢(x) and D(x)
The study of failure initiation in dielectric composites = e(x)E(x). Here, - is the electric potential and the dielec-

requires one to assess the magnitude of the local electrigs. constante(x) takes the two valueg, ande,, with €, > e,
field arising from macroscopic potential gradients. Macro-, 4

scopic quantities sensitive to the local field behavior include

higher-order moments of the electric-field inside the compos- A¢ =0, in phase 1,

ite. In this work, we focus on two—phase dielectric compos- (1.2
ites and develop optimal lower bounds on the higher mo- A¢=0, in phase 2.

ments of the electric-field that depend on statistics of the . )
microgeometry gathered from image analysis. It is assumed that there is perfect contact between the dielec-

The composite is contained inside a cu@eand no con- trics so the electric potential and normal component of the
straints are placed upon the arrangement of the two materia}gsplacement are continuous across the two-phase interface,
inside Q. The subsets of, occupied by materials one and €
two, are denoted by, and Q,, respectively. The indicator b= o,
function of material one is denoted ky and takes the value
one insideQ; and zero outside. The indicator function of
material two is given by, andy,=1-yx;. It is supposed that
Q is the period cell for an infinite periodic medium. The Here,n is the unit normal to the interface pointing into ma-
one-point and two-point correlation functions are given by terial two, and the subscripts indicate the side of the interface

that the fields are evaluated on. For a prescribed constant

(1.3
D;-n=D,-n.

1 —
S}: @ f x1(x)dx elgctric—field E,_the average electric-fiel¢E) satisfies(E)
Q =E and ¢(x)—E -x is periodic onQ. The effective dielectric
and tensor is defined by
1 (D)= E°E. (1.9
St =~ f x1(X) x1(x +t)dx, (1.1 _ _ _
Q n this work, we consider the moments of the electric-
Ql In th k der th ts of the elect

field intensity inside each phase given b
wheret is any vector andQ| is the volume ofQ. The one- y P g y

point correlationS; gives the volume fraction of material OalE)[HM
one. The two-point correlatio(t) gives the probability
that a rod of length and orientation specified tbiias both
ends in material one when it is translated and dropped inside Ol EO[NHHr (1.5)
the periodic medium. Image-processing techniques have re-

cently been developed in Ref. 1 to determine the one-poinfor 2=<r <. Here,(-) indicates the volume average of a
two-point, and three-point correlation functions from imagesquantity over the cub&. We also consider th&* norms
of composite microstructure. given by

IEM)llL=(q,) = lim (x1[EC)[HM,
r—oo

and
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IEGIL=q, = lim (o E(x)|DM For 0< 011§ 1, we suppose that the volume fraction of
r—e material oneS; is fixed and given by,. The volume fraction
of material two is given byd,=1-6,. For any vector field
IEX)[|=q) = im(JE(X)[). (1.6)  F(x) defined onQ, one has
r—oo
(X2(¥)|E(x) = F(x)[%) = 0. (2.9

In Sec. Ill, we present explicit optimal lower bounds on the . — .

moments in Eq(1.5 and L* norms in Eq.(1.6) that are  SettingF equal to a constant vectét, one obtains

given in terms ofS} and S. In this, work the minimizing 2 - o =T

configurations are shown to be given by suitably constructed Oe(EX)[) = 2F - (()EX) - 6lF|* (2.2

confocal-ellipsoid assemblag&d.These configurations in- Optimizing overEgives

clude the Hashin—Shtrikmarcoated sphere assemblage as a 1

special case. The_: bounding technique pres_ent_e_d in S_ecs. Il OM)EX)2) = = [Oa()EX)2. (2.3

and 1l also applies when loss becomes significant in the 6>

dielectrics, i.e., for complex values ef ande,. This issue is

taken up in Sec. VII where explicit bounds are given for o

statistically .isotropic composites. _ E°E ={[(&1 + xa(€ — €)]E(X)). (2.4
The optimal lower bounds for the higher moments of the _

electric-fields can be used to assess the effective higher-ord&ecalling that{E(x))=E, one easily deduces the identity

response of weakly nonlinear composite media. This is dugiven by

to the fact that the effective higher-order nonlinear response

Expanding Eq(1.4), one obtains

_ _\1lice_ E=
for weakly nonlinear dielectric media can be approximated (€2~ €0 (€%~ &1)E = ((0E(X). (2.9
by suitable higher moments of the linear electric-figld. From Eq.(2.3), one obtains
Previous investigations have provided upper and lower 1
bounds on the second moments of the electric-field in com- 2 El2
X)|E(X)|%) = ————|(E° - &l E|°. 2.6
posite medid 4 Higher-order moments of the electric-field IR O(e - 61)2|( iDE| 29

have been calculated numerically for the two—dimensiona|:

. ) . : . or p andq such thapp=1 and 1p+1/g=1, an elementary
dispersions of disk, needle, and square-shaped 'nd&g'onsestimate gives

as well as the density of states for the Hashin coated cylinder

assemblag® For the multiphase nonlinear power law di- Vi g | P

electric composites, optimal lower bounds on the moments Q™6 fQ X2 |E(0)|*Pdx

of the electric-field are found when the degree of the moment

matches the power of the nonlinearifyFor completeness, = |QI(x2(X)EX)[?), (2.7

we Ii.st. recent work QOne jn the_ context of two-phase Iinearand it follows that

elasticity. Here, optimal inclusion shapes are sought that

minimize the maximum eigenvalue of the local stress for a N b3 =

given applied stress. The work presented in Ref. 18 provides OB = Orle; — € (€%~ eDE], 28

an optimal lower bound on the supremum of the maximum .

principle stress for a single, simply connected stiff inclusionfor 2sr§m, From Eq.(2.5), 9“9 easily sees that _the_ IOV‘_’er

in an infinite matrix subject to a remote stress at infinity. ThePound given by Eq(2.8) is optimal when the electric field is

optimal shapes are given by ellipsoids. The work presentefionstant inside material two.

in Ref. 19 provides an optimal lower bound on the supre- ~ Similar arguments give the lower bound

mum of the maximum principle stress for two-dimensional ) —

periodic composites consisting of a single, simply connected Ca)[EX)[) = ﬁ“éﬁ_ e)E[%, (2.9
P o . S . 161~ €)

stiff inclusion in the period cell. The bound is given in terms

of the area fraction of the included phase, and for an explicignd it follows that

range of prescribed average stress, the optimal inclusions are 1/

0 J—
given by the Vigdergauz shap&s. O EX)|HYr = ﬁw,’e— &l)E] (2.10
11€17 €2

1/r

for 2=<r=ow. Here, equality holds in Eq2.10 when the

Il. LOWER BOUNDS ON THE ELECTRIC-FIELD electric-field is constant inside phase one.
INTENSITY IN ANISOTROPIC COMPOSITES

AND SUFFICIENT CONDITIONS

FOR OPTIMALITY 1. OPTIMAL LOWER BOUNDS ON THE MOMENTS

. . ) OF THE ELECTRIC-FIELD
In this section, we establish lower bounds on the

norm of the electric-field inside each material. Sufficient  Optimal lower bounds on the moments dridnorms of
conditions on the electric-field are identified, which guaran-the electric-field are presented. The bounds are given in
tee that lower bound is attained. These conditions are used terms of the volume fraction of material one and the eigen-
establish the optimality of the bounds presented in Sec. lll.values of a tensor of geometric parameters that depend ex-
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plicitly on the two-point correlation function. The tensor of @
geometric parameter$1(Sh,S?) is now well known and is (-— @ >
given byt

k®k (-

1
mgﬁ(k)w, (3.1) -

M(S,S) =

wherek is a vector on the integer lattick®k is the rank-1

>
matrix with entrieskk; andS?l(k) are the Fourier coefficients
of S(t) computed over the cub®. Here,trace{M (S}, )}
=1 and M(S},S)) is positive semidefinite. The eigenvalues
of M(S},S) ?rgwrittenli%an ascendilngﬁorder and are de-
noted by\;(S;,S)), N(S1,S), and\3(S;,S)). It is evident @
-

that one can introduce the one- and two-point correlation
functions for material two denoted 8 and Si(t). For fu-
ture reference, we point out that it is well known and easy to FIG. 1. Confocal-ellipsoid assemblage.

see that the associated tensor of geometric parameters

M(S5,S)) is identical toM(S],S3). _

We introduce the sek* of all vectorsd=(d;,d,,ds) T EX)=71-E (3.2
such that 6sd;<d,=<d; and X, d,=1. The class of micro-
geometriegconfigurations of the two material$or which
St=6, and\(SH,S)=d;, i=1,2,3 isdenoted byR(6;,d). In
what follows, we provide optimal lower bounds on the mo-
ments and.” norms of the electric-field for microstructures n-eE(X) =n E°E, (3.3
in the classR(6,,d). From a mathematical perspective, this o
problem is an optimization problem, i.e., among all configu-wheren is the exterior unit normal and® is the effective
rations inR(6,,d), we seek a configuration of the two di- dielectric constant of the confocal-ellipsoid assemblage.
electrics that minimize the moments and thienorms. Itis  Lastly, the electric-field inside the core material two is con-
shown here that the extremal microgeometries that attain th&tant and given by
bounds are given by the confocal-ellipsoid assemblages. 1

The construgtlon ofa confocal—glllpsmd assgmblag(_e with E(x) = ——(&- ¢|)E. (3.4)

a core of material two and a coating of material one is de- 0r(€; — €1)
scribed as follows, One considers the cube containing ef‘he confocal-ellipsoid assemblage consists of translated and

space-filling assemblage of ellipsoids. Here, all ellipsoids ar?escaled versions of the prototypical coated ellipsoid. The

contained insid&) and have the same shape and orientation I )

of axes and differ only in their size. Inside each ellipsoid,l€ctric-fieldE(x) in a rescaled and translated coated ellip-
one places a smaller confocal-ellipsoid filled with materialS0id With scale factor>0 is related to the electric-fiel(x)

two and the surrounding shell is filled with material one. Wein the prototype byE(x)=E(t"x) and Egs.(3.2—~3.4) are

call these coated ellipsoids. The part@hot covered by the satisfied for every rescaled and translated confocal-ellipsoid.
coated ellipsoids has zero volunimeasurg The volume Thus, the electric-field in material two is given by Eg.4)
fractions of materials one and two are the same for eachAnd the lower bound in Eq2.8) is attained. Interchanging
coated ellipsoid and are given by the proportighsand ,,  core and coating materials, one sees that the field inside
respectively(see Fig. 1. A confocal-ellipsoid assemblage phase one is constant for a confocal-ellipsoid assemblage
with a core of material one and a coating of material two iswith a core of material one and a coating of material two and

for every vectorr tangent to the external boundary sat
Secondly, on the external boundary, one has the following
flux condition given by

constructed in an identical way. is given by

For future reference, we list the well-known propethi%s 1 o
of the local electric-field inside the confocal-ellipsoid assem-  E(x) = ————(£%- ¢l )E. (3.5
blage that are useful for the subsequent analysis. To fix ideas, 0:(e1~ €)

we consider an assemblage with a core of material two and 2,4 the lower bound in Eq2.10) is attained.
coating of material one. We select a prototypical coated el-
lipsoid from the assemblage. One recalls that the electric
field in the composite is given b¥(x)=V ¢. Here, ¢ is 1_ €

For d and 6, fixed, we define

continuous inside the coated ellipsoid, harmonic in the core - &+ (€,—€)(1-6,)d; (36

phase and coating phase, and satisfies the transmission con-

ditions [Eq. (1.3)] on the core-coating interface. The fields and

inside the coated ellipsoid exhibit several distinguishing fea- €

tures. The first and foremost is thaét=E -x on the external L?= PRI (3.7)
€1~ (€1~ €)0,0;

boundary of the coated ellipsoid. This implies that on the
external boundary wherelLl<1<2
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The optimal lower bounds on the moments of the

electric-field are given in the following:

A. Optimal lower bound on the moments of the
electric-field intensity in material one

For every¢, andd in K*, the electric-fieldE(x) associ-
ated with any microgeometry iR (6,,d) satisfies

OLYE] < (xJE)[DY, for 2<r <o (3.9

Moreover, for everyd; andd in K*, there exists a confocal-
ellipsoid assemblage with a core of material oni(9; ,d),

for which the minor axis of the ellipsoids are aligned wih
and Eq.(3.8) holds with equality for every in 2<r <o,

B. Optimal lower bound on the  L* norms of the
electric-field intensity in material one

For every¢, andd in K*, the electric-fieldE(x) associ-
ated with any microgeometry iR (6,,d) satisfies

LYE] < [EX)]=(qy- (3.9

Moreover, for everyd; andd in K*, there exists a confocal-
ellipsoid assemblage with a core of material oni(¥; ,d),

for which the minor axis of the ellipsoids are aligned wih
and Eq.(3.9) holds with equality.

C. Optimal lower bound on the moments of the
electric-field intensity in material two

For every§, andd in K*, the electric-fieldE(x) associ-
ated with any microgeometry iR(6;,d) satisfies

(1-0)YLE| < (EX)DM, for 2<r <.
(3.10
Moreover, for everyd; andd in K*, there exists a confocal-

ellipsoid assemblage with a core of material twdd6; ,d),

for which the major axis of the ellipsoids are aligned wih
and Eq.(3.10 holds with equality for every in 2<r <o,

D. Optimal lower bound on the  L* norm of the
electric-field intensity in material two

For every¢, andd in K*, the electric-fieldE(x) associ-
ated with any microgeometry iR (6,,d) satisfies

(3.11

Moreover, for everyd; andd in K*, there exists a confocal-
ellipsoid assemblage with a core of material twoiigé, ,d),
for which the major axis of the ellipsoids are aligned with
and Eq.(3.11) holds with equality.

L?E[ <[[E(X)[lL=q,-

E. Optimal lower bound on the L* norm of the

electric-field intensity

For every¢, andd in K*, the electric-fieldE(x) associ-
ated with any microgeometry iR (6,,d) satisfies

R. Lipton

|—2|E| < |EM)||L=q)- (3.12

Moreover, for everyd; andd in K*, there exists a confocal-
ellipsoid assemblage with a core of material twd¥6;,d),
for which the major axis of the ellipsoids are aligned wih
and Eq.(3.12 holds with equality.

When the composite is statistically isotropid]
=(1/3,1/3,1/3 and
L2: 361/[361_ (61_ 62) 01] (313)

For this case, one has the following optimal lower bound on
the L™ norm of the electric-field intensity inside the compos-
ite given by the following:

F. Optimal lower bound on the L* norm of the
electric-field intensity for statistically
isotropic composites

Consider all microgeometries iR(6;,d) for the case
d=(1/3,1/3,1/3. For a prescribed average electric-fiéld
the lower bound on the* norm of the electric-field concen-
tration is given by

{3e1/[3€; - (€1 - &) 91]}|E| < EX)||L=0)- (3.19

The lower bound is attained by the electric-field inside the
Hashin-Shtrikman concentric-coated sphere assemblage with

a core of material two for every choice of applied fiéd

IV. DERIVATION OF THE LOWER BOUNDS
We recall the energy boun%}sgiven by
Un-npsEn-nsUn- 7y (4.9

for every constant vecton, Where
U=l - (1-See(er— €)1 = SIM(SL, )T,

(4.2

U = el + S exler — &) + (1 - SPM(S,SHI ™.
4.3
We write the eigenvalues @ in an ascending orded, €5,

and €. For any microgeometry ifR(6;,d), it follows easily
from Eq. (4.1 that

)_\isefsfi, for i=1,2,3, (4.9
where
M= e+ b6l e(ey— €))7+ 6rd5] Y,
M= €~ breif €r(€— )7 = 6105] 7
A= €+ 1€ ex(€1— €)1+ B0,
(4.9

Ao =€ = Ooer[ €1(€1— €2)F = 01,7
A3= e+ b6 ex(e1— €)1+ 60,17,

N3= €1~ brel €1(€— €)= 61dy ]
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It follows immediately from Eqs(4.4) and (4.5 that We now state the following:
— 1 J—
LYE| < ————|(&°- e)E|,
les=ed A. Attainabili {
(4.6) . Attainability property
2= 1 e = For any choice of9, and any symmetric tensdt with
LAE| < ——— (€~ elE], - o : o
Ooler— &) eigenvalues inC*, there exists a confocal-ellipsoid assem-

_ blage with a core of material one and a coating of material
and the lower bounds in Eq¢3.9) and (3.1 now follow  +vo such thaS}zel

immediately from Eqs(2.8), (2.10), and(4.6). .
To obtain bounds on the moments, note that E), M(S,S) =H, (5.3

(2.9), and(4.6) together with Holders' inequality imply that and there exists a confocal-ellipsoid assemblage with a core

— of material two and a coating of material one, such tBat
|Q|91(L1)2|E|2 = f X1|E(X)|2 dx = 01 and ﬂa}a
Q
) L\ M(S,S) =H. (5.4)
< (|Q|gy)*™ EX)|®Pdx| N . . ) .
Q6w (fQ XlEX) ) The attainability property is established in the following sec-
tion.
—— 5 We now establish the optimality of the lower bound in
|Q[6,(L*)%[E] gj x2lE(X)|* dx Eq. (3.8). The characteristic function of material one in the
Q

confocal-ellipsoid assemblage with a core of material one
p and a coating of material two is denoted /. The volume
$(|Q|92)l/q(f X2 E()|? dx) » (47)  fraction of material one is prescribed to Ig, i.e., (x)
Q =0,. The electric-field inside material one of the confocal-
where p=1, 1/p+1/g=1, and the lower bounds in Egs. ellipsoid assemblage is constant and from E45), one re-

(3.8) and (3.10 follow immediately. calls that the electric-field in material one is given by
The lower bound given by Eq3.12 follows immedi- 1 .
ately from Eq.(3.11) and E(x) = ——— (&%~ &l )E. (5.5
_ t1(€; — €)
LE| < HE(X)”L"‘(QZ) <[ EX)|l.=(q)- (4.8

For a prescribed vectatin £*, it follows from Eq.(5.3) that
V. OPTIMALITY we can choose the confocal-ellipsoid assemblage, such that

the eigenvalues oM (S}, S} correspond tal and
In this section, the lower bounds are shown to be at-

tained within the class of microstructures given by the M(SLSE =dsE. (5.6
confocal-ellipsoid assemblages. We write the formulas for . . . .
the effective dielectric tensors for the confocal-ellipsoid ast Of this case, it follows from earlier remarks that the minor
semblage in a form that is suitable for our purposes. Théxes of the ellipsoids are aligned with the applied figlend
formulas differ from the original formulas given in Refs. 2 from Egs.(5.2), (5.9, and(5.6), it follows that the electric-
and 3 and are derived in the following sections. The effectivdield in material one is given by

dielectric tensor for the confocal-ellipsoid assemblage with a 1 _
core of material two and a coating of material one is given =~ E(X)=————(\;~ &I)E=L'E. (5.7
by t1(€1 — €)

- _ _ Substitution gives
€1l = E°= el er(e— &)1 - HM(S, )], (5.9

and the eigenvalues are given Ey fori=1, 2, and 3 de- S _ _ o
fined in Eq.(4.5). Eigenvectors corresponding kg include and the optimality of Eq(3.8) is established. The optimality

vectors parallel to the major axis of the coated ellipsoids©f Ed- (3.9 follows immediately from Eq(5.7). The opti-
- mality of the bounds in Eqg3.10 and(3.11) follow from

identical considerations using confocal-ellipsoid assem-
blages with a core of material two and a coating of material
one. For this case, the major axes of the ellipsoids are

) 1 oy aligned withE andE(x)=L2E in the core.
-l =biefele— &)+ LMSSHIT, (5.2 Last, we establish the optimality of E¢3.12. To do
and the eigenvalues are given hy for i=1, 2, and 3 de- th|_s, we examine the_ electric-field |nS|d_e the confoc_al-
ellipsoid assemblage with a core of material two for which

fined in Eq.(4.5. Here, eigenvectors corresponding Xg o , _ ; e
include vectors parallel to the major axis of the coated eIIip-a_II ellipsoids have major axes aligned with the applied field

soids. Eigenvectors correspondinghtpinclude vectors par- E. Consider any coated ellipsoid in the assemblage and note
allel to the minor axis of the coated ellipsoids. that |[E(x)|=L2?|E| in the core. In what follows, we will show

OETECQINY = 6" LY E|, (5.9

Eigenvectors corresponding 1q include vectors parallel to
the minor axis of the coated ellipsoids.

The effective dielectric tensor with a core of material
one and a coating of material two is given by
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that the electric-field intensity in the coating is boundedVl. FORMULAS FOR EFFECTIVE PROPERTIES

above byL2|E|. Because the coated ellipsoids co@(up to

a set of measure zext then follows that In this section, we establish the formulas in E¢s.1)

and (5.2 for the effective properties of confocal-ellipsoid

L2|E|:||E(x)||Lw(Q) (5.9 assemblages. We equate these formulas with the better-
known formulas for the effective properties of confocal-
for this confocal-ellipsoid assemblage. ellipsoid assemblages given in Refs. 2 and 3 to establish the
Now we show that the electric-field intensity is boundedattainability property expressed in Eq5.3) and(5.4).
above byL?|E| in the coating. To do this, recall th (x)| We sketch the ideas behind the derivation of E5)2)

=|V¢(x)| in the coating phase and thatis harmonic there. noting that Eq.(5.1) is established along similar lines. The
Thus, |[E(x)| is subharmonic in the coating, and from the electric-field inside the concentric-ellipsoid assemblage with
maximum principle, it necessarily takes its maximum values2 core of material one and a coating of material two admits
either on the interface between the core and the coating or aine decompositioit(x) = Vu+E, whereu is Q periodic and
the external boundary of the coated ellipsoid. We denote taris the solution of

gent vectors to the core—coating interface#ynd the unit _

normal to the interface is denoted Iy The trace of the div{[erxs + €2(1 = x1)](Vu+E)} =0. (6.1
electric-field on the core side of the interface is denoted byl_
Ej,, and the trace of the electric-field on the coating side of
the interface is denoted bi|;. Continuity of ¢ across the

his is equivalent to

interface gives eAU=—div[(& - €)xy(Vu+E)]=0. (6.2)
Eq-7=Ep -7, (5.10 From Eq.(6.2), one easily obtains the identity
and continuity of the normal component of displacement  E(x) = - ey AMdiv(x;E(X)) +E, (6.3
gives €
€iEj-n=eEp N, (5.1)  wherew=A"f is theQ periodic solution ofAw=f. The con-

stant value thaE(x) takes in material one is denoted Ey
and it is clear thaj;(X)E(x)=x1(X)E. Multiplying Eq. (6.3
by x; and taking averages gives

For points on the interface whequ-n:O, it is clear that
|Ej1|=|E}5|. For all other points on the interface

€
E,-n|=-—=|E,-n|<|Ep-nl|, (5.12 ~ - ~ —
| It | El| 2 | | 12 | 01E = - M(Xl \Y A_ldiV X1E> + 01E (64)
€
sincee; > e,. It now follows from Eqs(5.10 and(5.12) that
_ It is well knowrf that
[Epal < |Epl =L7E] (5.13 T A B S9E 65
V A™ div x4E) = 6,0, M (S, S)E, 6.5

on the core—coating interface. The trace of the electric-field A o 102 M(S;
on the coating side of the external interface is denoted bwnd it follows that

Elex: On the external boundary of the coated ellipsoid, one (e1-6) -1
recalls Eq.(3.2) and E= .91< oyl + 22 0192/\/1(81,8%)) E. (6.6)

— €
Elext' 7=E - 7, (5.14

We recall from Eq(3.5) that
wherer is any tangent vector to the external boundary. From 1

Eq. (3.3), we have E=———(£-¢l)E. (6.7
1€~ €)

elE‘ext-nzgeg-nzfgg-n. (5.19 5
_ ) Equation(5.2) follows on elimination ofE from Eqs.(6.6)

Here,n is the outer unit normal to the external boundary andand(6.7).
from Eq. (4.9 We establish the attainability result stated in E5.3).

N From Refs. 2 and 3, the effective dielectric tensor with a core

of material one and a coating of material two is given by
Using, Eq.(5.16), we argue as before to deduce that on the o o -1
= —_ = —_ + .

outer boundaryE e,{ < |E|. We apply the maximum principle £~ el = hedele—e) 1+ OHT, 6.8

and note that & L2 to deduce thalE(x)| <L?E| in the coat- whereH is a symmetric-positive-semidefinite matrix with a
ing and optimality follows. unit trace. It is shown in Ref. 3 that{ ranges over all such

Optimality of Eq.(3.14) follows immediately from the matrices as the shape of the ellipsoids are varied while keep-
same arguments used to establish the optimality of Eqgng the core volume fractios; fixed. The attainability prop-
(3.12. This can also be checked by directly calculating theerty in Eq.(5.3) follows immediately noting that Eq$5.2)
electric field inside the Hashin-Shtrikman coated sphere asand(6.8) are equal and solving foM(S},S?l). Identical ar-
semblage. guments are used to establish E5,.4).
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VII. BOUNDS ON FIELD CONCENTRATIONS FOR VIIl. DISCUSSION: EXTREME SUPPRESSION OF
TWO-PHASE COMPOSITES WITH COMPLEX FIELD CONCENTRATIONS

DIELECTRIC PERMITTIVITY One recalls that the™ norms of the electric-field inten-

The effects of loss become important when consideringgity inside the confocal-ellipsoid assemblage with a core of
optical properties of composite materials. For this case, thenaterial two and a major axis aligned with is given by
dielectric constants; ande, are complex. A straightforward ¢, €, - (e, €,) 6;,d;]7YE|. In the limit when the ratio between
calculation easily shows that the lower bounds on the fieldhe major and minor axes of the ellipsoids tends to be infinite
fluctuations given by Eqg$2.8) and(2.10 also hold for this  the geometric parametat; tends to be zero and the”
case. Moreover, Eq2.8) is optimal when the electric-field is  orms of the field intensity, is preciselba. This value
constant in material two, and E@.10) is optimal when the  g4rees with the electric-field intensity seen in a layered ma-

electric-field is constant in material one. . . p o
The methodoloay of Sec. Il is applied to obtain lower terial with layers parallel td&e. The largest value of the
gy : PP norm of the electric-field intensity for this class of assem-

bounds on the field concentrations in statistically isotropicblages with a core of material two and major axes aligned
two-phase dielectric composites when the dielectric con- — )

stants are complex. To illustrate the method, we show how tgith E is given by the Hashin-Shtrikman coated sphere as-
obtain a lower bound on the field concentration inside mateS€MPlage when all axes of the ellipsoids are equal énd

rial two. For isotropic composites, the complex effective di-:1/3'_ o .
electric tensor reduces t6°=¢€®l. Here, € is the effective It is clear that theL™ norm of the electric-field intensity
complex permittivity. For this case, E(2.8) becomes |ns.|de the conchal-glppsmd assemblage WIFh a core Qf ma-
. terial two remains finite even as—0. In this limit, it is
OEG)HY = gélr(i £~ a )|E| (7.1 given by 1/1-6d;[E|. At first sight, this appears counter-
b2 €2- € intuitive as high-contrast inclusions can be arbitrarily close

for 2<r=<oo. together inside the confocal-ellipsoid assemblage. However,
Bounds one® that are given in terms of the volume frac- since every coated ellipsoid “sees” the linear Dirichlet

tions and dielectric constants of the component material§oundary conditions given by=E-x, it is clear that the

were derived in Ref. 22. These reduce to the Hashinfields inside each coated ellipsoid are not affected by the

Shtrikman bounds when the component dielectrics are red@urrounding inclusions, and field concentrations do not oc-

valued. In this context, the bounds are given by curve$ur

bounding a regiorﬂ(,2 of the complex plane inside, whiaf
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